論文

査読有り 国際誌
2020年11月

The impact of nuclear shape on the emergence of the neutron dripline

NATURE
  • Naofumi Tsunoda
  • ,
  • Takaharu Otsuka
  • ,
  • Kazuo Takayanagi
  • ,
  • Noritaka Shimizu
  • ,
  • Toshio Suzuki
  • ,
  • Yutaka Utsuno
  • ,
  • Sota Yoshida
  • ,
  • Hideki Ueno

587
7832
開始ページ
66
終了ページ
+
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41586-020-2848-x
出版者・発行元
NATURE RESEARCH

Atomic nuclei are composed of a certain number of protons Z and neutrons N. A natural question is how large Z and N can be. The study of superheavy elements explores the large Z limit(1,2), and we are still looking for a comprehensive theoretical explanation of the largest possible N for a given Z-the existence limit for the neutron-rich isotopes of a given atomic species, known as the neutron dripline(3). The neutron dripline of oxygen (Z = 8) can be understood theoretically as the result of single nucleons filling single-particle orbits confined by a mean potential, and experiments confirm this interpretation. However, recent experiments on heavier elements are at odds with this description. Here we show that the neutron dripline from fluorine (Z = 9) to magnesium (Z = 12) can be predicted using a mechanism that goes beyond the single-particle picture: as the number of neutrons increases, the nuclear shape assumes an increasingly ellipsoidal deformation, leading to a higher binding energy. The saturation of this effect (when the nucleus cannot be further deformed) yields the neutron dripline: beyond this maximum N, the isotope is unbound and further neutrons 'drip' out when added. Our calculations are based on a recently developed effective nucleon-nucleon interaction(4), for which large-scale eigenvalue problems are solved using configuration-interaction simulations. The results obtained show good agreement with experiments, even for excitation energies of low-lying states, up to the nucleus of magnesium-40 (which has 28 neutrons). The proposed mechanism for the formation of the neutron dripline has the potential to stimulate further thinking in the field towards explaining nucleosynthesis with neutron-rich nuclei.A mechanistic explanation for the origin of the neutron dripline shows that nuclei accommodate the addition of neutrons by becoming increasingly ellipsoidal, up to a maximum number of neutrons, reconciling theory and experiments.

リンク情報
DOI
https://doi.org/10.1038/s41586-020-2848-x
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/33149291
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000587009600010&DestApp=WOS_CPL
ID情報
  • DOI : 10.1038/s41586-020-2848-x
  • ISSN : 0028-0836
  • eISSN : 1476-4687
  • PubMed ID : 33149291
  • Web of Science ID : WOS:000587009600010

エクスポート
BibTeX RIS