論文

査読有り
2017年9月

Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments

NEW PHYTOLOGIST
  • Keita Morohashi
  • Miki Okamoto
  • Chiaki Yamazaki
  • Nobuharu Fujii
  • Yutaka Miyazawa
  • Motoshi Kamada
  • Haruo Kasahara
  • Ikuko Osada
  • Toru Shimazu
  • Yasuo Fusejima
  • Akira Higashibata
  • Takashi Yamazaki
  • Noriaki Ishioka
  • Akie Kobayashi
  • Hideyuki Takahashi
  • 全て表示

215
4
開始ページ
1476
終了ページ
1489
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1111/nph.14689
出版者・発行元
WILEY

Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood.
Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism.
Clinorotated or microgravity (lG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under lG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and lG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots.
Our results suggest that roots become hydrotropically sensitive in lG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity.

リンク情報
DOI
https://doi.org/10.1111/nph.14689
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000406876700019&DestApp=WOS_CPL
ID情報
  • DOI : 10.1111/nph.14689
  • ISSN : 0028-646X
  • eISSN : 1469-8137
  • Web of Science ID : WOS:000406876700019

エクスポート
BibTeX RIS