論文

2019年11月

First light demonstration of the integrated superconducting spectrometer

NATURE ASTRONOMY
  • Akira Endo
  • Kenichi Karatsu
  • Yoichi Tamura
  • Tai Oshima
  • Akio Taniguchi
  • Tatsuya Takekoshi
  • Shin'ichiro Asayama
  • Tom J. L. C. Bakx
  • Sjoerd Bosma
  • Juan Bueno
  • Kah Wuy Chin
  • Yasunori Fujii
  • Kazuyuki Fujita
  • Robert Huiting
  • Soh Ikarashi
  • Tsuyoshi Ishida
  • Shun Ishii
  • Ryohei Kawabe
  • Teun M. Klapwijk
  • Kotaro Kohno
  • Akira Kouchi
  • Nuria Llombart
  • Jun Maekawa
  • Vignesh Murugesan
  • Shunichi Nakatsubo
  • Masato Naruse
  • Kazushige Ohtawara
  • Alejandro Pascual Laguna
  • Junya Suzuki
  • Koyo Suzuki
  • David J. Thoen
  • Takashi Tsukagoshi
  • Tetsutaro Ueda
  • Pieter J. de Visser
  • Paul P. van der Werf
  • Stephen J. C. Yates
  • Yuki Yoshimura
  • Ozan Yurduseven
  • Jochem J. A. Baselmans
  • 全て表示

3
11
開始ページ
989
終了ページ
996
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41550-019-0850-8
出版者・発行元
NATURE PUBLISHING GROUP

Ultra-wideband, three-dimensional (3D) imaging spectrometry in the millimeter-submillimeter (mm-submm) band is an essential tool for uncovering the dust-enshrouded portion of the cosmic history of star formation and galaxy evolution(1-3). However, it is challenging to scale up conventional coherent heterodyne receivers(4) or free-space diffraction techniques(5) to sufficient bandwidths (>= 1 octave) and numbers of spatial pixels(2,3) (>10(2)). Here, we present the design and astronomical spectra of an intrinsically scalable, integrated superconducting spectrometer(6), which covers 332-377 GHz with a spectral resolution of F/Delta F similar to 380. It combines the multiplexing advantage of microwave kinetic inductance detectors (MKIDs)(7) with planar superconducting filters for dispersing the signal in a single, small superconducting integrated circuit. We demonstrate the two key applications for an instrument of this type: as an efficient redshift machine and as a fast multi-line spectral mapper of extended areas. The line detection sensitivity is in excellent agreement with the instrument design and laboratory performance, reaching the atmospheric foreground photon noise limit on-sky. The design can be scaled to band-widths in excess of an octave, spectral resolution up to a few thousand and frequencies up to similar to 1.1 THz. The miniature chip footprint of a few cm(2) allows for compact multi-pixel spectral imagers, which would enable spectroscopic direct imaging and large-volume spectroscopic surveys that are several orders of magnitude faster than what is currently possible(1-3).

リンク情報
DOI
https://doi.org/10.1038/s41550-019-0850-8
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000496474000013&DestApp=WOS_CPL
ID情報
  • DOI : 10.1038/s41550-019-0850-8
  • ISSN : 2397-3366
  • Web of Science ID : WOS:000496474000013

エクスポート
BibTeX RIS