論文

査読有り 国際誌
2018年10月

An Aromatic Farnesyltransferase Functions in Biosynthesis of the Anti-HIV Meroterpenoid Daurichromenic Acid.

Plant physiology
  • Haruna Saeki
  • Ryota Hara
  • Hironobu Takahashi
  • Miu Iijima
  • Ryosuke Munakata
  • Hiromichi Kenmoku
  • Kazuma Fuku
  • Ai Sekihara
  • Yoko Yasuno
  • Tetsuro Shinada
  • Daijiro Ueda
  • Tomoyuki Nishi
  • Tsutomu Sato
  • Yoshinori Asakawa
  • Fumiya Kurosaki
  • Kazufumi Yazaki
  • Futoshi Taura
  • 全て表示

178
2
開始ページ
535
終了ページ
551
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1104/pp.18.00655

Rhododendron dauricum produces daurichromenic acid, an anti-HIV meroterpenoid, via oxidative cyclization of the farnesyl group of grifolic acid. The prenyltransferase (PT) that synthesizes grifolic acid is a farnesyltransferase in plant specialized metabolism. In this study, we demonstrated that the isoprenoid moiety of grifolic acid is derived from the 2-C-methyl-d-erythritol-4-phosphate pathway that takes place in plastids. We explored candidate sequences of plastid-localized PT homologs and identified a cDNA for this PT, RdPT1, which shares moderate sequence similarity with known aromatic PTs. RdPT1 is expressed exclusively in the glandular scales, where daurichromenic acid accumulates. In addition, the gene product was targeted to plastids in plant cells. The recombinant RdPT1 regiospecifically synthesized grifolic acid from orsellinic acid and farnesyl diphosphate, demonstrating that RdPT1 is the farnesyltransferase involved in daurichromenic acid biosynthesis. This enzyme strictly preferred orsellinic acid as a prenyl acceptor, whereas it had a relaxed specificity for prenyl donor structures, also accepting geranyl and geranylgeranyl diphosphates with modest efficiency to synthesize prenyl chain analogs of grifolic acid. Such a broad specificity is a unique catalytic feature of RdPT1 that is not shared among secondary metabolic aromatic PTs in plants. We discuss the unusual substrate preference of RdPT1 using a molecular modeling approach. The biochemical properties as well as the localization of RdPT1 suggest that this enzyme produces meroterpenoids in glandular scales cooperatively with previously identified daurichromenic acid synthase, probably for chemical defense on the surface of R. dauricum plants.

リンク情報
DOI
https://doi.org/10.1104/pp.18.00655
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/30097469
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181053
ID情報
  • DOI : 10.1104/pp.18.00655
  • ISSN : 0032-0889
  • PubMed ID : 30097469
  • PubMed Central 記事ID : PMC6181053

エクスポート
BibTeX RIS