論文

査読有り 国際誌
2019年5月21日

Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation.

Nucleic acids research
  • Minoru Kubo
  • Tomoaki Nishiyama
  • Yosuke Tamada
  • Ryosuke Sano
  • Masaki Ishikawa
  • Takashi Murata
  • Akihiro Imai
  • Daniel Lang
  • Taku Demura
  • Ralf Reski
  • Mitsuyasu Hasebe
  • 全て表示

47
9
開始ページ
4539
終了ページ
4553
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1093/nar/gkz181

Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.

リンク情報
DOI
https://doi.org/10.1093/nar/gkz181
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/30873540
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511839
ID情報
  • DOI : 10.1093/nar/gkz181
  • PubMed ID : 30873540
  • PubMed Central 記事ID : PMC6511839

エクスポート
BibTeX RIS