論文

国際誌
2018年12月22日

Reduction in sucrose contents by downregulation of fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2.

Rice (New York, N.Y.)
  • Miwa Ohashi
  • ,
  • Keiki Ishiyama
  • ,
  • Miyako Kusano
  • ,
  • Atsushi Fukushima
  • ,
  • Soichi Kojima
  • ,
  • Toshihiko Hayakawa
  • ,
  • Tomoyuki Yamaya

11
1
開始ページ
65
終了ページ
65
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1186/s12284-018-0261-y

BACKGROUND: Our previous transcriptomic analysis revealed that downregulation of nitrogen and carbon metabolism in the basal portions of the shoots inhibited cytosolic glutamine synthetase1;2 (GS1;2), which severely reduced rice tiller number. In the present study, we used rice mutants lacking GS1;2 (gs1;2 mutants) to determine the contribution of carbon metabolism to tiller growth. RESULTS: Metabolomic analysis indicated the effects of carbon metabolism disorder such as reductions in the levels of sugar metabolites (e.g., sucrose and glucose 6-phosphate) in the shoot basal portions of the gs1;2 mutant seedlings. Decrease in sucrose caused by the lack of GS1;2 was successfully restored to the wild-type levels by introducing OsGS1;2 cDNA into the mutants. In the basal portions of the shoots, the lack of GS1;2 caused low expression of cytosolic fructose 1,6-bisphosphatase2 (OscFBP2), which is a key cytosolic sucrose synthesis enzyme; it is especially important in the phloem companion cells of the nodal vascular anastomoses. NH4+ supply upregulated OscFBP2 expression in the shoot basal portions of the wild type but not in those of the gs1;2 mutants. Rice mutants lacking cFBPase2 presented with ~ 30% reduction in total cFBPase activity in the basal portions of their shoots. These mutants displayed reductions in sucrose levels of the basal portions of their shoots but not in their leaf blades. They also had relatively lower tiller numbers at the early growth stage. CONCLUSIONS: Metabolomic analysis revealed that the lack of GS1;2 reduced sucrose metabolism in the basal portions of the shoots. Our results indicated that sucrose reduction was caused by the downregulation of OscFBP2 expression in the basal portions of the gs1;2 mutant shoots. The reduction in sucrose content caused by the lack of cFBPase2 resulted in lower tiller number at the early growth stage. Therefore, adequate sucrose supply via cFBPase2 may be necessary for tiller growth in the basal portions of rice shoots.

リンク情報
DOI
https://doi.org/10.1186/s12284-018-0261-y
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/30578468
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303225
ID情報
  • DOI : 10.1186/s12284-018-0261-y
  • PubMed ID : 30578468
  • PubMed Central 記事ID : PMC6303225

エクスポート
BibTeX RIS