論文

査読有り 国際誌
2020年4月

Callose synthesis suppresses cell death induced by low-calcium conditions in leaves1

Plant Physiology
  • Yusuke Shikanai
  • Ryosuke Yoshida
  • Tomoko Hirano
  • Yusuke Enomoto
  • Baohai Li
  • Mayu Asada
  • Mutsumi Yamagami
  • Katsushi Yamaguchi
  • Shuji Shigenobu
  • Ryo Tabata
  • Shinichiro Sawa
  • Hiroki Okada
  • Yoshikazu Ohya
  • Takehiro Kamiya
  • Toru Fujiwara
  • 全て表示

182
4
開始ページ
2199
終了ページ
2212
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1104/PP.19.00784

© 2020 American Society of Plant Biologists. All Rights Reserved. Despite the importance of preventing calcium (Ca) deficiency disorders in agriculture, knowledge of the molecular mechanisms underlying plant adaptations to low-Ca conditions is limited. In this study, we provide evidence for a crucial involvement of callose synthesis in the survival of Arabidopsis (Arabidopsis thaliana) under low-Ca conditions. A mutant sensitive to low-Ca conditions, low calcium sensitive3 (lcs3), exhibited high levels of cell death in emerging leaves and had defects in its expanding true leaves under low-Ca conditions. Further analyses showed that the causal mutation was located in a putative b-1,3-glucan (callose) synthase gene, GLUCAN SYNTHASE-LIKE10 (GSL10). Yeast complementation assay results showed that GSL10 encodes a functional callose synthase. Ectopic callose significantly accumulated in wild-type plants under low-Ca conditions, but at a low level in lcs3. The low-Ca sensitivity of lcs3 was phenocopied by the application of callose synthase inhibitors in wild-type plants, which resulted in leaf expansion failure, cell death, and reduced ectopic callose levels under low-Ca conditions. Transcriptome analyses showed that the expression of genes related to cell wall and defense responses was altered in both wild-type plants under low-Ca conditions and in lcs3 under normal-Ca conditions, suggesting that GSL10 is required for the alleviation of both cell wall damage and defense responses caused by low Ca levels. These results suggest that callose synthesis is essential for the prevention of cell death under low-Ca conditions and plays a key role in plants’ survival strategies under low-Ca conditions.

リンク情報
DOI
https://doi.org/10.1104/PP.19.00784
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32024698
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85083711294&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85083711294&origin=inward
ID情報
  • DOI : 10.1104/PP.19.00784
  • ISSN : 0032-0889
  • eISSN : 1532-2548
  • PubMed ID : 32024698
  • SCOPUS ID : 85083711294

エクスポート
BibTeX RIS