論文

国際誌
2021年1月27日

SUMO is a pervasive regulator of meiosis.

eLife
  • Nikhil R Bhagwat
  • Shannon N Owens
  • Masaru Ito
  • Jay V Boinapalli
  • Philip Poa
  • Alexander Ditzel
  • Srujan Kopparapu
  • Meghan Mahalawat
  • Owen Richard Davies
  • Sean R Collins
  • Jeffrey R Johnson
  • Nevan J Krogan
  • Neil Hunter
  • 全て表示

10
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.7554/eLife.57720

Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism.

リンク情報
DOI
https://doi.org/10.7554/eLife.57720
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/33502312
ID情報
  • DOI : 10.7554/eLife.57720
  • PubMed ID : 33502312

エクスポート
BibTeX RIS