論文

本文へのリンクあり
2022年3月17日

Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami

Natural Hazards and Earth System Sciences
  • Chatuphorn Somphong
  • Anawat Suppasri
  • Kwanchai Pakoksung
  • Tsuyoshi Nagasawa
  • Yuya Narita
  • Ryunosuke Tawatari
  • Shohei Iwai
  • Yukio Mabuchi
  • Saneiki Fujita
  • Shuji Moriguchi
  • Kenjiro Terada
  • Cipta Athanasius
  • Fumihiko Imamura
  • 全て表示

22
3
開始ページ
891
終了ページ
907
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.5194/nhess-22-891-2022

Studies have indicated that submarine landslides played an important role in the 2018 Sulawesi tsunami event, damaging the coast of Palu Bay in addition to the earthquake source. Most of these studies relied on observed coastal subaerial landslides to reproduce tsunamis but could still not fully explain the observational data. Recently, several numerical models included hypothesized submarine landslides that were taken into account to obtain a better explanation of the event. In this study, for the first time, submarine landslides were simulated by applying a numerical model based on Hovland's 3D slope stability analysis for cohesive-frictional soils. To specify landslide volume and location, the model assumed an elliptical slip surface on a vertical slope of 27ĝ€¯m of mesh-divided terrain and evaluated the minimum safety factor in each mesh area based on the surveyed soil property data extracted from the literature. The soil data were assumed as seabed conditions. The landslide output was then substituted into a two-layer numerical model based on a shallow-water equation to simulate tsunami propagation. The tsunamis induced by the submarine landslide that were modeled in this study were combined with the other tsunami components, i.e., coseismal deformation and tsunamis induced by previous literature's observed subaerial coastal collapse, and validated with various post-event field observational data, including tsunami run-up heights and flow depths around the bay, the inundation area around Palu city, waveforms recorded by the Pantoloan tide gauge, and video-inferred waveforms. The model generated several submarine landslides, with lengths of 0.2-2.0ĝ€¯km throughout Palu Bay. The results confirmed the existence of submarine landslide sources in the southern part of the bay and showed agreement with the observed tsunami data, including run-ups and flow depths. Furthermore, the simulated landslides also reproduced the video-inferred waveforms in three out of six locations. Although these calculated submarine landslides still cannot fully explain some of the observed tsunami data, they emphasize the possible submarine landslide locations in southern Palu Bay that should be studied and surveyed in the future.

リンク情報
DOI
https://doi.org/10.5194/nhess-22-891-2022
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127198366&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85127198366&origin=inward
ID情報
  • DOI : 10.5194/nhess-22-891-2022
  • ISSN : 1561-8633
  • eISSN : 1684-9981
  • SCOPUS ID : 85127198366

エクスポート
BibTeX RIS