論文

査読有り
2016年3月

Heterogeneous filament network formation by myosin light chain isoforms effects on contractile energy output of single cardiomyocytes derived from human induced pluripotent stem cells

REGENERATIVE THERAPY
  • Takeomi Mizutani
  • ,
  • Kazuya Furusawa
  • ,
  • Hisashi Haga
  • ,
  • Kazushige Kawabata

3
開始ページ
90
終了ページ
96
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.reth.2016.02.009
出版者・発行元
ELSEVIER SCIENCE BV

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are expected to play an important role in heart therapies, in which hiPSC-CMs should generate sufficient contractile force to pump blood. However, recent studies have shown that the contractility of myocardial mimics composed of hiPSC-CMs is lower than that of adult human myocardium. To examine the mechanism by which contractile force output of hiPSC-CMs is weakened, we measured the contractile force of single hiPSC-CMs and observed the fibrous distribution of myosin II regulatory light chain (MRLC) of cardiac (contributes to beating) and non-cardiac (does not contribute to beating) isoforms. Single hiPSC-CMs were cultured on an extracellular matrix gel, and the contractile force and strain energy exerted on the gel were measured. Strain energy was not uniform between cells and ranged from 0.2 to 5.8 pJ. The combination of contractile force measurement and immunofluorescent microscopy for MRLC isoforms showed that cells with higher strain energy expressed the weakened non-cardiac myosin II fibers compared to those of cells with lower strain energy. Observation of cardiac and non-cardiac MRLC showed that the MRLC isoforms formed heterogeneous filament networks. These results suggest that strain energy output from single hiPSC-CMs depends both cardiac and non-cardiac myosin fibers, which prevent deformation of the cell body. (c) 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.

リンク情報
DOI
https://doi.org/10.1016/j.reth.2016.02.009
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000418834300014&DestApp=WOS_CPL
ID情報
  • DOI : 10.1016/j.reth.2016.02.009
  • ISSN : 2352-3204
  • Web of Science ID : WOS:000418834300014

エクスポート
BibTeX RIS