論文

査読有り
2016年

Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters

CRYOSPHERE
  • Alexandra Touzeau
  • Amaelle Landais
  • Barbara Stenni
  • Ryu Uemura
  • Kotaro Fukui
  • Shuji Fujita
  • Sarah Guilbaud
  • Alexey Ekaykin
  • Mathieu Casado
  • Eugeni Barkan
  • Boaz Luz
  • Olivier Magand
  • Gregory Teste
  • Emmanuel Le Meur
  • Melanie Baroni
  • Joel Savarino
  • Ilann Bourgeois
  • Camille Risi
  • 全て表示

10
2
開始ページ
837
終了ページ
852
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.5194/tc-10-837-2016
出版者・発行元
COPERNICUS GESELLSCHAFT MBH

The isotopic compositions of oxygen and hydrogen in ice cores are invaluable tools for the reconstruction of past climate variations. Used alone, they give insights into the variations of the local temperature, whereas taken together they can provide information on the climatic conditions at the point of origin of the moisture. However, recent analyses of snow from shallow pits indicate that the climatic signal can become erased in very low accumulation regions, due to local processes of snow reworking. The signal-to-noise ratio decreases and the climatic signal can then only be retrieved using stacks of several snow pits. Obviously, the signal is not completely lost at this stage, otherwise it would be impossible to extract valuable climate information from ice cores as has been done, for instance, for the last glaciation. To better understand how the climatic signal is passed from the precipitation to the snow, we present here results from varied snow samples from East Antarctica. First, we look at the relationship between isotopes and temperature from a geographical point of view, using results from three traverses across Antarctica, to see how the relationship is built up through the distillation process. We also take advantage of these measures to see how second-order parameters (d-excess and O-17-excess) are related to delta O-18 and how they are controlled. d-excess increases in the interior of the continent (i.e., when delta O-18 decreases), due to the distillation process, whereas O-17-excess decreases in remote areas, due to kinetic fractionation at low temperature. In both cases, these changes are associated with the loss of original information regarding the source. Then, we look at the same relationships in precipitation samples collected over 1 year at Dome C and Vostok, as well as in surface snow at Dome C. We note that the slope of the delta O-18 vs. temperature (T) relationship decreases in these samples compared to those from the traverses, and thus caution is advocated when using spatial slopes for past climate reconstruction. The second-order parameters behave in the same way in the precipitation as in the surface snow from traverses, indicating that similar processes are active and that their interpretation in terms of source climatic parameters is strongly complicated by local temperature effects in East Antarctica. Finally we check if the same relationships between delta O-18 and second-order parameters are also found in the snow from four snow pits. While the d-excess remains opposed to delta O-18 in most snow pits, the O-17-excess is no longer positively correlated to delta O-18 and even shows anti-correlation to delta O-18 at Vostok. This may be due to a stratospheric influence at this site and/or to post-deposition processes.

リンク情報
DOI
https://doi.org/10.5194/tc-10-837-2016
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000379411800026&DestApp=WOS_CPL
URL
http://orcid.org/0000-0002-4236-0085
ID情報
  • DOI : 10.5194/tc-10-837-2016
  • ISSN : 1994-0416
  • eISSN : 1994-0424
  • ORCIDのPut Code : 46562320
  • Web of Science ID : WOS:000379411800026

エクスポート
BibTeX RIS