論文

2022年

Nitrile hydrogenation to secondary amines under ambient conditions over palladium-platinum random alloy nanoparticles

Catalysis Science and Technology
  • Yoshihide Nishida
  • Katsutoshi Sato
  • Chandan Chaudhari
  • Hiroshi Yamada
  • Takaaki Toriyama
  • Tomokazu Yamamoto
  • Syo Matsumura
  • Susan Meñez Aspera
  • Hiroshi Nakanishi
  • Masaaki Haneda
  • Katsutoshi Nagaoka
  • 全て表示

記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1039/d1cy02302k

Catalytic hydrogenation of nitriles is a cost-effective and green method for synthesizing amines and imines, which have many industrial applications. However, this reaction generally requires harsh reaction conditions and produces a mixture of amine and imine products due to its chemodiversity. Therefore, it is a challenge to selectively hydrogenate nitriles to a single product under ambient conditions (1 bar of H2 at 25 °C). Here, we report an effective method for selective hydrogenation of nitriles that does not require heat, pressurization, or long reaction times. We achieved this by means of bimetalization between palladium (Pd) and platinum (Pt) nanoparticles, which resulted in a catalyst that showed high yield of secondary amines. Although Pd and Pt are thermodynamically immiscible, we have successfully alloyed the two metals by means of rapid chemical reduction assisted by microwave heating. X-ray absorption spectroscopy suggested the formation of heteroatomic Pdδ+Ptδ− sites via charge transfer between neighboring Pd and Pt atoms in the alloy structure. Moreover, Fourier transform IR spectroscopy and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy indicated that decreasing the size of the PdPt (50 : 50) nanoparticles improved the degree of alloying and facilitated the formation of electron-enriched Ptδ− species. On the basis of kinetics studies and density functional theory calculations, we concluded that cyano group activation, which was the rate-determining step over monometallic Pd and Pt catalysts, was accelerated over the heteroatomic Pdδ+Ptδ− sites because of strong back-donation from electron-enriched Ptδ− species to the carbon atom of the cyano groups. The PdPt random alloy nanoparticles catalyzed the reactions of various aromatic and heterocyclic nitriles, and the corresponding secondary amines were selectively obtained in just a few hours.

リンク情報
DOI
https://doi.org/10.1039/d1cy02302k
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127908982&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85127908982&origin=inward
ID情報
  • DOI : 10.1039/d1cy02302k
  • ISSN : 2044-4753
  • eISSN : 2044-4761
  • SCOPUS ID : 85127908982

エクスポート
BibTeX RIS