論文

査読有り 筆頭著者
2016年3月

Taste information derived from T1R-expressing taste cells in mice

BIOCHEMICAL JOURNAL
  • Ryusuke Yoshida
  • ,
  • Yuzo Ninomiya

473
開始ページ
525
終了ページ
536
記述言語
英語
掲載種別
DOI
10.1042/BJ20151015
出版者・発行元
PORTLAND PRESS LTD

The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes aremediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination.

リンク情報
DOI
https://doi.org/10.1042/BJ20151015
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000377208000001&DestApp=WOS_CPL
ID情報
  • DOI : 10.1042/BJ20151015
  • ISSN : 0264-6021
  • eISSN : 1470-8728
  • Web of Science ID : WOS:000377208000001

エクスポート
BibTeX RIS