論文

2000年8月

Effects of CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro

JOURNAL OF CELLULAR PHYSIOLOGY
  • T Nishida
  • ,
  • T Nakanishi
  • ,
  • M Asano
  • ,
  • T Shimo
  • ,
  • M Takigawa

184
2
開始ページ
197
終了ページ
206
記述言語
英語
掲載種別
研究論文(学術雑誌)
出版者・発行元
WILEY-LISS

Connective tissue growth factor/hypertrophic chondrocyte-specific gene product Hcs24 (CTGF/Hcs24) promotes the proliferation and differentiation of chondrocytes and endothelial cells which are involved in endochondral ossification (Shimo et al., 1998, J Biochem 124:130-140; Shimo el al., 1999, J Biochem 126:137-145; Nakanishi et at., 2000, Endocrinology 141:264-273). To further clarify the role of CTGF/Hcs24 in endochondral ossification, here we investigated the effects of CTGF/Hcs24 on the proliferation and differentiation of osteoblastic cell lines in vitro. A binding study using I-125-labeled recombinant CTGF/Hcs24 (rCTGF/Hcs24) disclosed two classes of specific binding sites on a human osteosarcoma cell line, Saos-2. The apparent dissociation constant (Kd) value of each binding sire was 17.2 and 391 nM, respectively. A cross-linking study revealed the formation of I-125-rCTGF/Hcs24-receptor complex with an apparent molecular weight of 280 kDa. The intensity of I-125-rCTGF/Hcs24-receptor complex decreased on the addition of increasing concentrations of unlabeled rCTGF/Hcs24, but not platelet-derived growth factor-BB homodimer or basic fibroblast growth factor. These findings suggest that osteoblastic cells have specific receptor molecules for CTGF/Hcs24. rCTGF/Hcs24 promoted the proliferation of Saos-2 cells and a mouse osteoblast cell line MC3T3-E1 in a dose- and time-dependent manner. rCTGF/Hcs24 also increased mRNA expression of type I collagen, alkaline phosphatase, osteopontin, and osteocalcin in both Saos-2 cells and MC3T3-E1 cells. Moreover, rCTGF/Hcs24 increased alkaline phosphatase activity in both cells, it also stimulated collagen synthesis in MC3T3-E1 cells. Furthermore, rCTGF/Hcs24 stimulated the matrix mineralization on MC3T3-E1 cells and its stimulatory effect was comparable to that of bone morphogenetic protein-2. These findings indicate that CTGF/Hcs24 is a novel, potent stimulator for the proliferation and differentiation of osteoblasts in addition to chondrocytes and endothelial cells. Because of these functions, we are re-defining CTGF/Hcs24 as a major factor to promote endochondral ossification to be called "ecogenin: endochondral ossification genetic factor." J. Cell. Physiol. 184:197-206, 2000. (C) 2000 Wiley-Liss, Inc.

リンク情報
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000087939800007&DestApp=WOS_CPL
ID情報
  • ISSN : 0021-9541
  • Web of Science ID : WOS:000087939800007

エクスポート
BibTeX RIS