論文

査読有り
2012年4月

Discovery and Analysis of Cofactor-dependent Phosphoglycerate Mutase Homologs as Novel Phosphoserine Phosphatases in Hydrogenobacter thermophilus

JOURNAL OF BIOLOGICAL CHEMISTRY
  • Yoko Chiba
  • ,
  • Kenro Oshima
  • ,
  • Hiroyuki Arai
  • ,
  • Masaharu Ishii
  • ,
  • Yasuo Igarashi

287
15
開始ページ
11934
終了ページ
11941
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1074/jbc.M111.330621
出版者・発行元
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

Phosphoserine phosphatase (PSP) catalyzes the dephosphorylation of phosphoserine to serine and inorganic phosphate. PSPs, which have been found in all three domains of life, belong to the haloacid dehalogenase-like hydrolase superfamily. However, certain organisms, particularly bacteria, lack a classical PSP gene, although they appear to possess a functional phosphoserine synthetic pathway. The apparent lack of a PSP ortholog in Hydrogenobacter thermophilus, an obligately chemolithoautotrophic and thermophilic bacterium, represented a missing link in serine anabolism because our previous study suggested that serine should be synthesized from phosphoserine. Here, we detected PSP activity in cell-free extracts of H. thermophilus and purified two proteins with PSP activity. Surprisingly, these proteins belonged to the histidine phosphatase superfamily and had been annotated as cofactor-dependent phosphoglycerate mutase (dPGM). However, because they possessed neither mutase activity nor the residues important for the activity, we defined these proteins as novel-type PSPs. Considering the strict substrate specificity toward L-phosphoserine, kinetic parameters, and PSP activity levels in cell-free extracts, these proteins were strongly suggested to function as PSPs in vivo. We also detected PSP activity from "dPGM-like" proteins of Thermus thermophilus and Arabidopsis thaliana, suggesting that PSP activity catalyzed by dPGM-like proteins may be distributed among a broad range of organisms. In fact, a number of bacterial genera, including Firmicutes and Cyanobacteria, were proposed to be strong candidates for possessing this novel type of PSP. These findings will help to identify the missing link in serine anabolism.

リンク情報
DOI
https://doi.org/10.1074/jbc.M111.330621
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/22337887
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000302782200032&DestApp=WOS_CPL
ID情報
  • DOI : 10.1074/jbc.M111.330621
  • ISSN : 0021-9258
  • PubMed ID : 22337887
  • Web of Science ID : WOS:000302782200032

エクスポート
BibTeX RIS